Skip to content

Stimulus

Functions for creating stimuli and noise inputs for models.

BaseMultipleInputs

Bases: Stimulus

Base class for stimuli consisting of multiple time series, such as summed inputs or concatenated inputs.

Source code in neurolib/utils/stimulus.py
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
class BaseMultipleInputs(Stimulus):
    """
    Base class for stimuli consisting of multiple time series, such as summed inputs or concatenated inputs.
    """

    def __init__(self, inputs):
        """
        :param inputs: List of Inputs to combine
        :type inputs: list[`Input`]
        """
        assert all(isinstance(input, Input) for input in inputs)
        self.inputs = inputs

    def __len__(self):
        """
        Return number of inputs.
        """
        return len(self.inputs)

    def __getitem__(self, index):
        """
        Return inputs by index. This also allows iteration.
        """
        return self.inputs[index]

    @property
    def n(self):
        n = set([input.n for input in self])
        assert len(n) == 1
        return next(iter(n))

    @n.setter
    def n(self, n):
        for input in self:
            input.n = n

    def get_params(self):
        """
        Get all parameters recursively for all inputs.
        """
        return {
            "type": self.__class__.__name__,
            **{f"input_{i}": input.get_params() for i, input in enumerate(self)},
        }

    def update_params(self, params_dict):
        """
        Update all parameters recursively.
        """
        for i, input in enumerate(self):
            input.update_params(params_dict.get(f"input_{i}", {}))

__getitem__(index)

Return inputs by index. This also allows iteration.

Source code in neurolib/utils/stimulus.py
240
241
242
243
244
def __getitem__(self, index):
    """
    Return inputs by index. This also allows iteration.
    """
    return self.inputs[index]

__init__(inputs)

Parameters:

Name Type Description Default
inputs list[`Input`]

List of Inputs to combine

required
Source code in neurolib/utils/stimulus.py
226
227
228
229
230
231
232
def __init__(self, inputs):
    """
    :param inputs: List of Inputs to combine
    :type inputs: list[`Input`]
    """
    assert all(isinstance(input, Input) for input in inputs)
    self.inputs = inputs

__len__()

Return number of inputs.

Source code in neurolib/utils/stimulus.py
234
235
236
237
238
def __len__(self):
    """
    Return number of inputs.
    """
    return len(self.inputs)

get_params()

Get all parameters recursively for all inputs.

Source code in neurolib/utils/stimulus.py
257
258
259
260
261
262
263
264
def get_params(self):
    """
    Get all parameters recursively for all inputs.
    """
    return {
        "type": self.__class__.__name__,
        **{f"input_{i}": input.get_params() for i, input in enumerate(self)},
    }

update_params(params_dict)

Update all parameters recursively.

Source code in neurolib/utils/stimulus.py
266
267
268
269
270
271
def update_params(self, params_dict):
    """
    Update all parameters recursively.
    """
    for i, input in enumerate(self):
        input.update_params(params_dict.get(f"input_{i}", {}))

ConcatenatedStimulus

Bases: BaseMultipleInputs

Represents temporal concatenation of of arbitrary many stimuli.

Example:

    summed_stimulus = SinusoidalInput(...) & OrnsteinUhlenbeckProcess(...)

Source code in neurolib/utils/stimulus.py
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
class ConcatenatedStimulus(BaseMultipleInputs):
    """
    Represents temporal concatenation of of arbitrary many stimuli.

    Example:
    ```
        summed_stimulus = SinusoidalInput(...) & OrnsteinUhlenbeckProcess(...)
    ```
    """

    def __init__(self, inputs, length_ratios=None):
        """
        :param length_ratios: Ratios of lengths of concatenated stimuli
        :type length_ratios: list[int|float]
        """
        if length_ratios is None:
            length_ratios = [1] * len(inputs)
        assert len(inputs) == len(length_ratios)
        assert all(length > 0 for length in length_ratios)
        self.length_ratios = length_ratios
        super().__init__(inputs)

    def __and__(self, other):
        assert isinstance(other, Input)
        assert self.n == other.n
        if isinstance(other, ConcatenatedStimulus):
            return ConcatenatedStimulus(
                inputs=self.inputs + other.inputs,
                length_ratios=self.length_ratios + other.length_ratios,
            )
        else:
            return ConcatenatedStimulus(inputs=self.inputs + [other], length_ratios=self.length_ratios + [1])

    def as_array(self, duration, dt):
        """
        Return concatenation of all stimuli as numpy array.
        """
        # normalize ratios to sum = 1
        ratios = [i / sum(self.length_ratios) for i in self.length_ratios]
        concat = np.concatenate(
            [input.as_array(duration * ratio, dt) for input, ratio in zip(self.inputs, ratios)],
            axis=1,
        )
        length = int(duration / dt)
        # due to rounding errors, the overall length might be longer by a few dt
        return concat[:, :length]

    def as_cubic_splines(self, duration, dt, shift_start_time=0.0):
        # normalize ratios to sum = 1
        ratios = [i / sum(self.length_ratios) for i in self.length_ratios]
        result = self.inputs[0].as_cubic_splines(duration * ratios[0], dt, shift_start_time)
        for input, ratio in zip(self.inputs[1:], ratios[1:]):
            last_time = result[-1].time
            temp = input.as_cubic_splines(duration * ratio, dt, shift_start_time=last_time)
            # `extend` adds an iteratable (whole `CubicHermiteSpline` is an
            # iterable of `Anchors`) to the current spline
            result.extend(temp)
        return result

__init__(inputs, length_ratios=None)

Parameters:

Name Type Description Default
length_ratios list[int|float]

Ratios of lengths of concatenated stimuli

None
Source code in neurolib/utils/stimulus.py
321
322
323
324
325
326
327
328
329
330
331
def __init__(self, inputs, length_ratios=None):
    """
    :param length_ratios: Ratios of lengths of concatenated stimuli
    :type length_ratios: list[int|float]
    """
    if length_ratios is None:
        length_ratios = [1] * len(inputs)
    assert len(inputs) == len(length_ratios)
    assert all(length > 0 for length in length_ratios)
    self.length_ratios = length_ratios
    super().__init__(inputs)

as_array(duration, dt)

Return concatenation of all stimuli as numpy array.

Source code in neurolib/utils/stimulus.py
344
345
346
347
348
349
350
351
352
353
354
355
356
def as_array(self, duration, dt):
    """
    Return concatenation of all stimuli as numpy array.
    """
    # normalize ratios to sum = 1
    ratios = [i / sum(self.length_ratios) for i in self.length_ratios]
    concat = np.concatenate(
        [input.as_array(duration * ratio, dt) for input, ratio in zip(self.inputs, ratios)],
        axis=1,
    )
    length = int(duration / dt)
    # due to rounding errors, the overall length might be longer by a few dt
    return concat[:, :length]

ExponentialInput

Bases: Stimulus

Exponential rise or decay input.

Source code in neurolib/utils/stimulus.py
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
class ExponentialInput(Stimulus):
    """
    Exponential rise or decay input.
    """

    def __init__(
        self,
        inp_max,
        exp_coef=30.0,
        exp_type="rise",
        start=None,
        end=None,
        n=1,
        seed=None,
    ):
        """
        :param inp_max: Maximum of stimulus.
        :type inp_max: float
        :param exp_coeficient: Coeffiecent for the exponential (the higher the
            coefficient, the faster it rises or decays).
        :type exp_coeficient: float
        :param exp_type: Whether to "rise" or to "decay".
        :type exp_type: str
        """
        self.inp_max = inp_max
        self.exp_coef = exp_coef
        assert exp_type in ["rise", "decay"]
        self.exp_type = exp_type
        super().__init__(
            start=start,
            end=end,
            n=n,
            seed=seed,
        )

    def generate_input(self, duration, dt):
        self._get_times(duration=duration, dt=dt)
        exponential = np.exp(-(self.exp_coef / self.times[-1]) * self.times) * self.inp_max
        if self.exp_type == "rise":
            exponential = -exponential + self.inp_max
        return self._trim_stim(np.vstack([exponential] * self.n))

__init__(inp_max, exp_coef=30.0, exp_type='rise', start=None, end=None, n=1, seed=None)

Parameters:

Name Type Description Default
inp_max float

Maximum of stimulus.

required
exp_coeficient float

Coeffiecent for the exponential (the higher the coefficient, the faster it rises or decays).

required
exp_type str

Whether to "rise" or to "decay".

'rise'
Source code in neurolib/utils/stimulus.py
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
def __init__(
    self,
    inp_max,
    exp_coef=30.0,
    exp_type="rise",
    start=None,
    end=None,
    n=1,
    seed=None,
):
    """
    :param inp_max: Maximum of stimulus.
    :type inp_max: float
    :param exp_coeficient: Coeffiecent for the exponential (the higher the
        coefficient, the faster it rises or decays).
    :type exp_coeficient: float
    :param exp_type: Whether to "rise" or to "decay".
    :type exp_type: str
    """
    self.inp_max = inp_max
    self.exp_coef = exp_coef
    assert exp_type in ["rise", "decay"]
    self.exp_type = exp_type
    super().__init__(
        start=start,
        end=end,
        n=n,
        seed=seed,
    )

Input

Generates input to model.

Base class for other input types.

Source code in neurolib/utils/stimulus.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
class Input:
    """
    Generates input to model.

    Base class for other input types.
    """

    def __init__(self, n=1, seed=None):
        """
        :param n: Number of spatial dimensions / independent realizations of the input.
            For determinstic inputs, the array is just copied,
            for stociastic / noisy inputs, this means independent realizations.
        :type n: int
        :param seed: Seed for the random number generator.
        :type seed: int|None
        """
        self.n = n
        self.seed = seed
        # seed the generator
        np.random.seed(seed)
        # get parameter names
        self.param_names = inspect.getfullargspec(self.__init__).args
        self.param_names.remove("self")

    def __add__(self, other):
        """
        Sum two inputs into one SummedStimulus.
        """
        assert isinstance(other, Input)
        assert self.n == other.n
        if isinstance(other, SummedStimulus):
            return SummedStimulus(inputs=[self] + other.inputs)
        else:
            return SummedStimulus(inputs=[self, other])

    def __and__(self, other):
        """
        Concatenate two inputs into ConcatenatedStimulus.
        """
        assert isinstance(other, Input)
        assert self.n == other.n
        if isinstance(other, ConcatenatedStimulus):
            return ConcatenatedStimulus(inputs=[self] + other.inputs, length_ratios=[1] + other.length_ratios)
        else:
            return ConcatenatedStimulus(inputs=[self, other])

    def _reset(self):
        """
        Reset is called after generating an input. Can be used to reset
        intrinsic properties.
        """
        pass

    def get_params(self):
        """
        Return the parameters of the input as dict.
        """
        assert all(hasattr(self, name) for name in self.param_names), self.param_names
        params = {name: getattr(self, name) for name in self.param_names}
        return {"type": self.__class__.__name__, **params}

    def update_params(self, params_dict):
        """
        Update model input parameters.

        :param params_dict: New parameters for this input
        :type params_dict: dict
        """

        def _sanitize(value):
            """
            Change string `None` to actual None - can happen with Exploration or
            Evolution, since `pypet` does None -> "None".
            """
            if value == "None":
                return None
            else:
                return value

        for param, value in params_dict.items():
            if hasattr(self, param):
                setattr(self, param, _sanitize(value))

    def _get_times(self, duration, dt):
        """
        Generate time vector.

        :param duration: Duration of the input, in milliseconds
        :type duration: float
        :param dt: dt of input, in milliseconds
        :type dt: float
        """
        self.times = np.arange(dt, duration + dt, dt)

    def generate_input(self, duration, dt):
        """
        Function to generate input.

        :param duration: Duration of the input, in milliseconds
        :type duration: float
        :param dt: dt of input, in milliseconds
        :type dt: float
        """
        raise NotImplementedError

    def as_array(self, duration, dt):
        """
        Return input as numpy array.

        :param duration: Duration of the input, in milliseconds
        :type duration: float
        :param dt: dt of input, in milliseconds
        :type dt: float
        """
        array = self.generate_input(duration, dt)
        self._reset()
        return array

    def as_cubic_splines(self, duration, dt, shift_start_time=0.0):
        """
        Return as cubic Hermite splines.

        :param duration: Duration of the input, in milliseconds
        :type duration: float
        :param dt: dt of input, in milliseconds
        :type dt: float
        :param shift_start_time: By how much to shift the stimulus start time
        :type shift_start_time: float
        """
        self._get_times(duration, dt)
        splines = CubicHermiteSpline.from_data(self.times + shift_start_time, self.generate_input(duration, dt).T)
        self._reset()
        return splines

    def to_model(self, model):
        """
        Return numpy array of stimuli based on model parameters.

        Example:
        ```
        model.params["ext_exc_input"] = SinusoidalInput(...).to_model(model)
        ```

        :param model: neurolib's model
        :type model: `neurolib.models.Model`
        """
        assert isinstance(model, Model)
        # set number of spatial dimensions as the number of nodes in the brian network
        self.n = model.params["N"]
        return self.as_array(duration=model.params["duration"], dt=model.params["dt"])

__add__(other)

Sum two inputs into one SummedStimulus.

Source code in neurolib/utils/stimulus.py
39
40
41
42
43
44
45
46
47
48
def __add__(self, other):
    """
    Sum two inputs into one SummedStimulus.
    """
    assert isinstance(other, Input)
    assert self.n == other.n
    if isinstance(other, SummedStimulus):
        return SummedStimulus(inputs=[self] + other.inputs)
    else:
        return SummedStimulus(inputs=[self, other])

__and__(other)

Concatenate two inputs into ConcatenatedStimulus.

Source code in neurolib/utils/stimulus.py
50
51
52
53
54
55
56
57
58
59
def __and__(self, other):
    """
    Concatenate two inputs into ConcatenatedStimulus.
    """
    assert isinstance(other, Input)
    assert self.n == other.n
    if isinstance(other, ConcatenatedStimulus):
        return ConcatenatedStimulus(inputs=[self] + other.inputs, length_ratios=[1] + other.length_ratios)
    else:
        return ConcatenatedStimulus(inputs=[self, other])

__init__(n=1, seed=None)

Parameters:

Name Type Description Default
n int

Number of spatial dimensions / independent realizations of the input. For determinstic inputs, the array is just copied, for stociastic / noisy inputs, this means independent realizations.

1
seed int|None

Seed for the random number generator.

None
Source code in neurolib/utils/stimulus.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def __init__(self, n=1, seed=None):
    """
    :param n: Number of spatial dimensions / independent realizations of the input.
        For determinstic inputs, the array is just copied,
        for stociastic / noisy inputs, this means independent realizations.
    :type n: int
    :param seed: Seed for the random number generator.
    :type seed: int|None
    """
    self.n = n
    self.seed = seed
    # seed the generator
    np.random.seed(seed)
    # get parameter names
    self.param_names = inspect.getfullargspec(self.__init__).args
    self.param_names.remove("self")

as_array(duration, dt)

Return input as numpy array.

Parameters:

Name Type Description Default
duration float

Duration of the input, in milliseconds

required
dt float

dt of input, in milliseconds

required
Source code in neurolib/utils/stimulus.py
120
121
122
123
124
125
126
127
128
129
130
131
def as_array(self, duration, dt):
    """
    Return input as numpy array.

    :param duration: Duration of the input, in milliseconds
    :type duration: float
    :param dt: dt of input, in milliseconds
    :type dt: float
    """
    array = self.generate_input(duration, dt)
    self._reset()
    return array

as_cubic_splines(duration, dt, shift_start_time=0.0)

Return as cubic Hermite splines.

Parameters:

Name Type Description Default
duration float

Duration of the input, in milliseconds

required
dt float

dt of input, in milliseconds

required
shift_start_time float

By how much to shift the stimulus start time

0.0
Source code in neurolib/utils/stimulus.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def as_cubic_splines(self, duration, dt, shift_start_time=0.0):
    """
    Return as cubic Hermite splines.

    :param duration: Duration of the input, in milliseconds
    :type duration: float
    :param dt: dt of input, in milliseconds
    :type dt: float
    :param shift_start_time: By how much to shift the stimulus start time
    :type shift_start_time: float
    """
    self._get_times(duration, dt)
    splines = CubicHermiteSpline.from_data(self.times + shift_start_time, self.generate_input(duration, dt).T)
    self._reset()
    return splines

generate_input(duration, dt)

Function to generate input.

Parameters:

Name Type Description Default
duration float

Duration of the input, in milliseconds

required
dt float

dt of input, in milliseconds

required
Source code in neurolib/utils/stimulus.py
109
110
111
112
113
114
115
116
117
118
def generate_input(self, duration, dt):
    """
    Function to generate input.

    :param duration: Duration of the input, in milliseconds
    :type duration: float
    :param dt: dt of input, in milliseconds
    :type dt: float
    """
    raise NotImplementedError

get_params()

Return the parameters of the input as dict.

Source code in neurolib/utils/stimulus.py
68
69
70
71
72
73
74
def get_params(self):
    """
    Return the parameters of the input as dict.
    """
    assert all(hasattr(self, name) for name in self.param_names), self.param_names
    params = {name: getattr(self, name) for name in self.param_names}
    return {"type": self.__class__.__name__, **params}

to_model(model)

Return numpy array of stimuli based on model parameters.

Example:

model.params["ext_exc_input"] = SinusoidalInput(...).to_model(model)

Parameters:

Name Type Description Default
model `neurolib.models.Model`

neurolib's model

required
Source code in neurolib/utils/stimulus.py
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def to_model(self, model):
    """
    Return numpy array of stimuli based on model parameters.

    Example:
    ```
    model.params["ext_exc_input"] = SinusoidalInput(...).to_model(model)
    ```

    :param model: neurolib's model
    :type model: `neurolib.models.Model`
    """
    assert isinstance(model, Model)
    # set number of spatial dimensions as the number of nodes in the brian network
    self.n = model.params["N"]
    return self.as_array(duration=model.params["duration"], dt=model.params["dt"])

update_params(params_dict)

Update model input parameters.

Parameters:

Name Type Description Default
params_dict dict

New parameters for this input

required
Source code in neurolib/utils/stimulus.py
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def update_params(self, params_dict):
    """
    Update model input parameters.

    :param params_dict: New parameters for this input
    :type params_dict: dict
    """

    def _sanitize(value):
        """
        Change string `None` to actual None - can happen with Exploration or
        Evolution, since `pypet` does None -> "None".
        """
        if value == "None":
            return None
        else:
            return value

    for param, value in params_dict.items():
        if hasattr(self, param):
            setattr(self, param, _sanitize(value))

LinearRampInput

Bases: Stimulus

Linear ramp input.

Source code in neurolib/utils/stimulus.py
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
class LinearRampInput(Stimulus):
    """
    Linear ramp input.
    """

    def __init__(
        self,
        inp_max,
        ramp_length,
        start=None,
        end=None,
        n=1,
        seed=None,
    ):
        """
        :param inp_max: Maximum of stimulus.
        :type inp_max: float
        :param ramp_length: Duration of linear ramp, in milliseconds
        :type ramp_length: float
        """
        self.inp_max = inp_max
        self.ramp_length = ramp_length
        super().__init__(
            start=start,
            end=end,
            n=n,
            seed=seed,
        )

    def generate_input(self, duration, dt):
        self._get_times(duration=duration, dt=dt)
        linear_inp = (self.inp_max / self.ramp_length) * self.times * (self.times < self.ramp_length) + self.inp_max * (
            self.times >= self.ramp_length
        )
        return self._trim_stim(np.vstack([linear_inp] * self.n))

__init__(inp_max, ramp_length, start=None, end=None, n=1, seed=None)

Parameters:

Name Type Description Default
inp_max float

Maximum of stimulus.

required
ramp_length float

Duration of linear ramp, in milliseconds

required
Source code in neurolib/utils/stimulus.py
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
def __init__(
    self,
    inp_max,
    ramp_length,
    start=None,
    end=None,
    n=1,
    seed=None,
):
    """
    :param inp_max: Maximum of stimulus.
    :type inp_max: float
    :param ramp_length: Duration of linear ramp, in milliseconds
    :type ramp_length: float
    """
    self.inp_max = inp_max
    self.ramp_length = ramp_length
    super().__init__(
        start=start,
        end=end,
        n=n,
        seed=seed,
    )

OrnsteinUhlenbeckProcess

Bases: Input

Ornstein–Uhlenbeck input, i.e. dX = (mu - X)/tau * dt + sigma*dW

Source code in neurolib/utils/stimulus.py
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
class OrnsteinUhlenbeckProcess(Input):
    """
    Ornstein–Uhlenbeck input, i.e.
        dX = (mu - X)/tau * dt + sigma*dW
    """

    def __init__(
        self,
        mu,
        sigma,
        tau,
        n=1,
        seed=None,
    ):
        """
        :param mu: Drift of the OU process
        :type mu: float
        :param sigma: Standard deviation of the Wiener process, i.e. strength of the noise
        :type sigma: float
        :param tau: Timescale of the OU process, in ms
        :type tau: float
        """
        self.mu = mu
        self.sigma = sigma
        self.tau = tau
        super().__init__(
            n=n,
            seed=seed,
        )

    def generate_input(self, duration, dt):
        self._get_times(duration=duration, dt=dt)
        x = np.random.rand(self.n, self.times.shape[0]) * self.mu
        return self.numba_ou(x, self.times, dt, self.mu, self.sigma, self.tau, self.n)

    @staticmethod
    @numba.njit()
    def numba_ou(x, times, dt, mu, sigma, tau, n):
        """
        Generation of Ornstein-Uhlenback input - wrapped in numba's jit for
        speed.
        """
        for i in range(times.shape[0] - 1):
            x[:, i + 1] = x[:, i] + dt * ((mu - x[:, i]) / tau) + sigma * np.sqrt(dt) * np.random.randn(n)
        return x

__init__(mu, sigma, tau, n=1, seed=None)

Parameters:

Name Type Description Default
mu float

Drift of the OU process

required
sigma float

Standard deviation of the Wiener process, i.e. strength of the noise

required
tau float

Timescale of the OU process, in ms

required
Source code in neurolib/utils/stimulus.py
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
def __init__(
    self,
    mu,
    sigma,
    tau,
    n=1,
    seed=None,
):
    """
    :param mu: Drift of the OU process
    :type mu: float
    :param sigma: Standard deviation of the Wiener process, i.e. strength of the noise
    :type sigma: float
    :param tau: Timescale of the OU process, in ms
    :type tau: float
    """
    self.mu = mu
    self.sigma = sigma
    self.tau = tau
    super().__init__(
        n=n,
        seed=seed,
    )

numba_ou(x, times, dt, mu, sigma, tau, n) staticmethod

Generation of Ornstein-Uhlenback input - wrapped in numba's jit for speed.

Source code in neurolib/utils/stimulus.py
426
427
428
429
430
431
432
433
434
435
@staticmethod
@numba.njit()
def numba_ou(x, times, dt, mu, sigma, tau, n):
    """
    Generation of Ornstein-Uhlenback input - wrapped in numba's jit for
    speed.
    """
    for i in range(times.shape[0] - 1):
        x[:, i + 1] = x[:, i] + dt * ((mu - x[:, i]) / tau) + sigma * np.sqrt(dt) * np.random.randn(n)
    return x

SinusoidalInput

Bases: Stimulus

Sinusoidal input.

Source code in neurolib/utils/stimulus.py
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
class SinusoidalInput(Stimulus):
    """
    Sinusoidal input.
    """

    def __init__(
        self,
        amplitude,
        frequency,
        dc_bias=False,
        start=None,
        end=None,
        n=1,
        seed=None,
    ):
        """
        :param amplitude: Amplitude of the sinusoid.
        :type amplitude: float
        :param frequency: Frequency of the sinus oscillation, in Hz
        :type frequency: float
        :param dc_bias: Whether the sinusoid oscillates around 0
            (False), or has a positive DC bias, thus non-negative (True).
        :type dc_bias: bool
        """
        self.amplitude = amplitude
        self.frequency = frequency
        self.dc_bias = dc_bias
        super().__init__(
            start=start,
            end=end,
            n=n,
            seed=seed,
        )

    def generate_input(self, duration, dt):
        self._get_times(duration=duration, dt=dt)
        sinusoid = self.amplitude * np.sin(2 * np.pi * self.times * (self.frequency / 1000.0))
        if self.dc_bias:
            sinusoid += self.amplitude
        return self._trim_stim(np.vstack([sinusoid] * self.n))

__init__(amplitude, frequency, dc_bias=False, start=None, end=None, n=1, seed=None)

Parameters:

Name Type Description Default
amplitude float

Amplitude of the sinusoid.

required
frequency float

Frequency of the sinus oscillation, in Hz

required
dc_bias bool

Whether the sinusoid oscillates around 0 (False), or has a positive DC bias, thus non-negative (True).

False
Source code in neurolib/utils/stimulus.py
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
def __init__(
    self,
    amplitude,
    frequency,
    dc_bias=False,
    start=None,
    end=None,
    n=1,
    seed=None,
):
    """
    :param amplitude: Amplitude of the sinusoid.
    :type amplitude: float
    :param frequency: Frequency of the sinus oscillation, in Hz
    :type frequency: float
    :param dc_bias: Whether the sinusoid oscillates around 0
        (False), or has a positive DC bias, thus non-negative (True).
    :type dc_bias: bool
    """
    self.amplitude = amplitude
    self.frequency = frequency
    self.dc_bias = dc_bias
    super().__init__(
        start=start,
        end=end,
        n=n,
        seed=seed,
    )

SquareInput

Bases: Stimulus

Oscillatory square input.

Source code in neurolib/utils/stimulus.py
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
class SquareInput(Stimulus):
    """
    Oscillatory square input.
    """

    def __init__(
        self,
        amplitude,
        frequency,
        dc_bias=False,
        start=None,
        end=None,
        n=1,
        seed=None,
    ):
        """
        :param amplitude: Amplitude of the square
        :type amplitude: float
        :param frequency: Frequency of the square oscillation, in Hz
        :type frequency: float
        :param dc_bias: Whether the square oscillates around 0
            (False), or has a positive DC bias, thus non-negative (True).
        :type dc_bias: bool
        """
        self.amplitude = amplitude
        self.frequency = frequency
        self.dc_bias = dc_bias
        super().__init__(
            start=start,
            end=end,
            n=n,
            seed=seed,
        )

    def generate_input(self, duration, dt):
        self._get_times(duration=duration, dt=dt)
        square_inp = self.amplitude * square(2 * np.pi * self.times * (self.frequency / 1000.0))
        if self.dc_bias:
            square_inp += self.amplitude
        return self._trim_stim(np.vstack([square_inp] * self.n))

__init__(amplitude, frequency, dc_bias=False, start=None, end=None, n=1, seed=None)

Parameters:

Name Type Description Default
amplitude float

Amplitude of the square

required
frequency float

Frequency of the square oscillation, in Hz

required
dc_bias bool

Whether the square oscillates around 0 (False), or has a positive DC bias, thus non-negative (True).

False
Source code in neurolib/utils/stimulus.py
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
def __init__(
    self,
    amplitude,
    frequency,
    dc_bias=False,
    start=None,
    end=None,
    n=1,
    seed=None,
):
    """
    :param amplitude: Amplitude of the square
    :type amplitude: float
    :param frequency: Frequency of the square oscillation, in Hz
    :type frequency: float
    :param dc_bias: Whether the square oscillates around 0
        (False), or has a positive DC bias, thus non-negative (True).
    :type dc_bias: bool
    """
    self.amplitude = amplitude
    self.frequency = frequency
    self.dc_bias = dc_bias
    super().__init__(
        start=start,
        end=end,
        n=n,
        seed=seed,
    )

StepInput

Bases: Stimulus

Step input.

Source code in neurolib/utils/stimulus.py
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
class StepInput(Stimulus):
    """
    Step input.
    """

    def __init__(
        self,
        step_size,
        start=None,
        end=None,
        n=1,
        seed=None,
    ):
        """
        :param step_size: Size of the step, i.e., the amplitude.
        :type step_size: float
        """
        self.step_size = step_size
        super().__init__(
            start=start,
            end=end,
            n=n,
            seed=seed,
        )

    def generate_input(self, duration, dt):
        self._get_times(duration=duration, dt=dt)
        return self._trim_stim(np.ones((self.n, self.times.shape[0])) * self.step_size)

__init__(step_size, start=None, end=None, n=1, seed=None)

Parameters:

Name Type Description Default
step_size float

Size of the step, i.e., the amplitude.

required
Source code in neurolib/utils/stimulus.py
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
def __init__(
    self,
    step_size,
    start=None,
    end=None,
    n=1,
    seed=None,
):
    """
    :param step_size: Size of the step, i.e., the amplitude.
    :type step_size: float
    """
    self.step_size = step_size
    super().__init__(
        start=start,
        end=end,
        n=n,
        seed=seed,
    )

Stimulus

Bases: Input

Generates a stimulus with optional start and end times.

Source code in neurolib/utils/stimulus.py
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
class Stimulus(Input):
    """
    Generates a stimulus with optional start and end times.
    """

    def __init__(
        self,
        start=None,
        end=None,
        n=1,
        seed=None,
    ):
        """
        :param start: start of the stimulus, in milliseconds
        :type start: float
        :param end: end of the stimulus, in milliseconds
        :type end: float
        """
        self.start = start
        self.end = end
        self._default_start = start
        self._default_end = end
        super().__init__(
            n=n,
            seed=seed,
        )

    def _reset(self):
        self.start = self._default_start
        self.end = self._default_end

    def _get_times(self, duration, dt):
        super()._get_times(duration=duration, dt=dt)
        self.start = self.start or 0.0
        self.end = self.end or duration + dt
        assert self.start < duration
        assert self.end <= duration + dt

    def _trim_stim(self, stim_input):
        """
        Trim stimulus. Translate the start of the stimulus by
        padding the beginning and replace the end with zeros.
        """
        # trim start
        how_much = int(np.sum(self.times <= self.start))
        # translate start of the stim by padding the beginning with zeros
        stim_input = np.pad(stim_input, ((0, 0), (how_much, 0)), mode="constant")
        if how_much > 0:
            stim_input = stim_input[:, :-how_much]
        # trim end
        stim_input[:, self.times > self.end] = 0.0
        return stim_input

__init__(start=None, end=None, n=1, seed=None)

Parameters:

Name Type Description Default
start float

start of the stimulus, in milliseconds

None
end float

end of the stimulus, in milliseconds

None
Source code in neurolib/utils/stimulus.py
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def __init__(
    self,
    start=None,
    end=None,
    n=1,
    seed=None,
):
    """
    :param start: start of the stimulus, in milliseconds
    :type start: float
    :param end: end of the stimulus, in milliseconds
    :type end: float
    """
    self.start = start
    self.end = end
    self._default_start = start
    self._default_end = end
    super().__init__(
        n=n,
        seed=seed,
    )

SummedStimulus

Bases: BaseMultipleInputs

Represents the summation of arbitrary many stimuli.

Example:

    summed_stimulus = SinusoidalInput(...) + OrnsteinUhlenbeckProcess(...)

Source code in neurolib/utils/stimulus.py
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
class SummedStimulus(BaseMultipleInputs):
    """
    Represents the summation of arbitrary many stimuli.

    Example:
    ```
        summed_stimulus = SinusoidalInput(...) + OrnsteinUhlenbeckProcess(...)
    ```
    """

    def __add__(self, other):
        assert isinstance(other, Input)
        assert self.n == other.n
        if isinstance(other, SummedStimulus):
            return SummedStimulus(inputs=self.inputs + other.inputs)
        else:
            return SummedStimulus(inputs=self.inputs + [other])

    def as_array(self, duration, dt):
        """
        Return sum of all inputes as numpy array.
        """
        return np.sum(
            np.stack([input.as_array(duration, dt) for input in self.inputs]),
            axis=0,
        )

    def as_cubic_splines(self, duration, dt, shift_start_time=0.0):
        """
        Return sum of all inputes as cubic Hermite splines.
        """
        result = self.inputs[0].as_cubic_splines(duration, dt, shift_start_time)
        for input in self.inputs[1:]:
            result.plus(input.as_cubic_splines(duration, dt, shift_start_time))
        return result

as_array(duration, dt)

Return sum of all inputes as numpy array.

Source code in neurolib/utils/stimulus.py
292
293
294
295
296
297
298
299
def as_array(self, duration, dt):
    """
    Return sum of all inputes as numpy array.
    """
    return np.sum(
        np.stack([input.as_array(duration, dt) for input in self.inputs]),
        axis=0,
    )

as_cubic_splines(duration, dt, shift_start_time=0.0)

Return sum of all inputes as cubic Hermite splines.

Source code in neurolib/utils/stimulus.py
301
302
303
304
305
306
307
308
def as_cubic_splines(self, duration, dt, shift_start_time=0.0):
    """
    Return sum of all inputes as cubic Hermite splines.
    """
    result = self.inputs[0].as_cubic_splines(duration, dt, shift_start_time)
    for input in self.inputs[1:]:
        result.plus(input.as_cubic_splines(duration, dt, shift_start_time))
    return result

WienerProcess

Bases: Input

Stimulus sampled from a Wiener process, i.e. drawn from standard normal distribution N(0, sqrt(dt)).

Source code in neurolib/utils/stimulus.py
381
382
383
384
385
386
387
388
class WienerProcess(Input):
    """
    Stimulus sampled from a Wiener process, i.e. drawn from standard normal distribution N(0, sqrt(dt)).
    """

    def generate_input(self, duration, dt):
        self._get_times(duration=duration, dt=dt)
        return np.random.normal(0.0, np.sqrt(dt), (self.n, self.times.shape[0]))

ZeroInput

Bases: Input

No stimulus, i.e. all zeros. Can be used to add a delay between two stimuli.

Source code in neurolib/utils/stimulus.py
371
372
373
374
375
376
377
378
class ZeroInput(Input):
    """
    No stimulus, i.e. all zeros. Can be used to add a delay between two stimuli.
    """

    def generate_input(self, duration, dt):
        self._get_times(duration=duration, dt=dt)
        return np.zeros((self.n, self.times.shape[0]))

RectifiedInput(amplitude, n=1)

Return rectified input with exponential decay, i.e. a negative step followed by a slow decay to zero, followed by a positive step and again a slow decay to zero. Can be used for bistablity detection.

Parameters:

Name Type Description Default
amplitude float

Amplitude (both negative and positive) for the step

required
n int

Number of realizations (spatial dimension)

1

Returns:

Type Description
`ConctatenatedInput`

Concatenated input which represents the rectified stimulus with exponential decay

Source code in neurolib/utils/stimulus.py
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
def RectifiedInput(amplitude, n=1):
    """
    Return rectified input with exponential decay, i.e. a negative step followed by a
    slow decay to zero, followed by a positive step and again a slow decay to zero.
    Can be used for bistablity detection.

    :param amplitude: Amplitude (both negative and positive) for the step
    :type amplitude: float
    :param n: Number of realizations (spatial dimension)
    :type n: int
    :return: Concatenated input which represents the rectified stimulus with exponential decay
    :rtype: `ConctatenatedInput`
    """

    return ConcatenatedStimulus(
        [
            StepInput(step_size=-amplitude, n=n),
            ExponentialInput(inp_max=amplitude, exp_type="rise", exp_coef=12.5, n=n)
            + StepInput(step_size=-amplitude, n=n),
            StepInput(step_size=amplitude, n=n),
            ExponentialInput(amplitude, exp_type="decay", exp_coef=7.5, n=n),
            StepInput(step_size=0.0, n=n),
        ],
        length_ratios=[0.5, 2.5, 0.5, 1.5, 1.0],
    )