Stimulus
Functions for creating stimuli and noise inputs for models.
BaseMultipleInputs
Bases: Stimulus
Base class for stimuli consisting of multiple time series, such as summed inputs or concatenated inputs.
Source code in neurolib/utils/stimulus.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
|
__getitem__(index)
Return inputs by index. This also allows iteration.
Source code in neurolib/utils/stimulus.py
240 241 242 243 244 |
|
__init__(inputs)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inputs |
list[`Input`]
|
List of Inputs to combine |
required |
Source code in neurolib/utils/stimulus.py
226 227 228 229 230 231 232 |
|
__len__()
Return number of inputs.
Source code in neurolib/utils/stimulus.py
234 235 236 237 238 |
|
get_params()
Get all parameters recursively for all inputs.
Source code in neurolib/utils/stimulus.py
257 258 259 260 261 262 263 264 |
|
update_params(params_dict)
Update all parameters recursively.
Source code in neurolib/utils/stimulus.py
266 267 268 269 270 271 |
|
ConcatenatedStimulus
Bases: BaseMultipleInputs
Represents temporal concatenation of of arbitrary many stimuli.
Example:
summed_stimulus = SinusoidalInput(...) & OrnsteinUhlenbeckProcess(...)
Source code in neurolib/utils/stimulus.py
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
__init__(inputs, length_ratios=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
length_ratios |
list[int|float]
|
Ratios of lengths of concatenated stimuli |
None
|
Source code in neurolib/utils/stimulus.py
321 322 323 324 325 326 327 328 329 330 331 |
|
as_array(duration, dt)
Return concatenation of all stimuli as numpy array.
Source code in neurolib/utils/stimulus.py
344 345 346 347 348 349 350 351 352 353 354 355 356 |
|
ExponentialInput
Bases: Stimulus
Exponential rise or decay input.
Source code in neurolib/utils/stimulus.py
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
|
__init__(inp_max, exp_coef=30.0, exp_type='rise', start=None, end=None, n=1, seed=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inp_max |
float
|
Maximum of stimulus. |
required |
exp_coeficient |
float
|
Coeffiecent for the exponential (the higher the coefficient, the faster it rises or decays). |
required |
exp_type |
str
|
Whether to "rise" or to "decay". |
'rise'
|
Source code in neurolib/utils/stimulus.py
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
|
Input
Generates input to model.
Base class for other input types.
Source code in neurolib/utils/stimulus.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
__add__(other)
Sum two inputs into one SummedStimulus.
Source code in neurolib/utils/stimulus.py
39 40 41 42 43 44 45 46 47 48 |
|
__and__(other)
Concatenate two inputs into ConcatenatedStimulus.
Source code in neurolib/utils/stimulus.py
50 51 52 53 54 55 56 57 58 59 |
|
__init__(n=1, seed=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
Number of spatial dimensions / independent realizations of the input. For determinstic inputs, the array is just copied, for stociastic / noisy inputs, this means independent realizations. |
1
|
seed |
int|None
|
Seed for the random number generator. |
None
|
Source code in neurolib/utils/stimulus.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
as_array(duration, dt)
Return input as numpy array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
duration |
float
|
Duration of the input, in milliseconds |
required |
dt |
float
|
dt of input, in milliseconds |
required |
Source code in neurolib/utils/stimulus.py
120 121 122 123 124 125 126 127 128 129 130 131 |
|
as_cubic_splines(duration, dt, shift_start_time=0.0)
Return as cubic Hermite splines.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
duration |
float
|
Duration of the input, in milliseconds |
required |
dt |
float
|
dt of input, in milliseconds |
required |
shift_start_time |
float
|
By how much to shift the stimulus start time |
0.0
|
Source code in neurolib/utils/stimulus.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
generate_input(duration, dt)
Function to generate input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
duration |
float
|
Duration of the input, in milliseconds |
required |
dt |
float
|
dt of input, in milliseconds |
required |
Source code in neurolib/utils/stimulus.py
109 110 111 112 113 114 115 116 117 118 |
|
get_params()
Return the parameters of the input as dict.
Source code in neurolib/utils/stimulus.py
68 69 70 71 72 73 74 |
|
to_model(model)
Return numpy array of stimuli based on model parameters.
Example:
model.params["ext_exc_input"] = SinusoidalInput(...).to_model(model)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
`neurolib.models.Model`
|
neurolib's model |
required |
Source code in neurolib/utils/stimulus.py
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
update_params(params_dict)
Update model input parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params_dict |
dict
|
New parameters for this input |
required |
Source code in neurolib/utils/stimulus.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
|
LinearRampInput
Bases: Stimulus
Linear ramp input.
Source code in neurolib/utils/stimulus.py
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
|
__init__(inp_max, ramp_length, start=None, end=None, n=1, seed=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inp_max |
float
|
Maximum of stimulus. |
required |
ramp_length |
float
|
Duration of linear ramp, in milliseconds |
required |
Source code in neurolib/utils/stimulus.py
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
|
OrnsteinUhlenbeckProcess
Bases: Input
Ornstein–Uhlenbeck input, i.e. dX = (mu - X)/tau * dt + sigma*dW
Source code in neurolib/utils/stimulus.py
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
|
__init__(mu, sigma, tau, n=1, seed=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mu |
float
|
Drift of the OU process |
required |
sigma |
float
|
Standard deviation of the Wiener process, i.e. strength of the noise |
required |
tau |
float
|
Timescale of the OU process, in ms |
required |
Source code in neurolib/utils/stimulus.py
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
|
numba_ou(x, times, dt, mu, sigma, tau, n)
staticmethod
Generation of Ornstein-Uhlenback input - wrapped in numba's jit for speed.
Source code in neurolib/utils/stimulus.py
426 427 428 429 430 431 432 433 434 435 |
|
SinusoidalInput
Bases: Stimulus
Sinusoidal input.
Source code in neurolib/utils/stimulus.py
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|
__init__(amplitude, frequency, dc_bias=False, start=None, end=None, n=1, seed=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
amplitude |
float
|
Amplitude of the sinusoid. |
required |
frequency |
float
|
Frequency of the sinus oscillation, in Hz |
required |
dc_bias |
bool
|
Whether the sinusoid oscillates around 0 (False), or has a positive DC bias, thus non-negative (True). |
False
|
Source code in neurolib/utils/stimulus.py
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
|
SquareInput
Bases: Stimulus
Oscillatory square input.
Source code in neurolib/utils/stimulus.py
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
|
__init__(amplitude, frequency, dc_bias=False, start=None, end=None, n=1, seed=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
amplitude |
float
|
Amplitude of the square |
required |
frequency |
float
|
Frequency of the square oscillation, in Hz |
required |
dc_bias |
bool
|
Whether the square oscillates around 0 (False), or has a positive DC bias, thus non-negative (True). |
False
|
Source code in neurolib/utils/stimulus.py
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
|
StepInput
Bases: Stimulus
Step input.
Source code in neurolib/utils/stimulus.py
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
|
__init__(step_size, start=None, end=None, n=1, seed=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
step_size |
float
|
Size of the step, i.e., the amplitude. |
required |
Source code in neurolib/utils/stimulus.py
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
|
Stimulus
Bases: Input
Generates a stimulus with optional start and end times.
Source code in neurolib/utils/stimulus.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
__init__(start=None, end=None, n=1, seed=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start |
float
|
start of the stimulus, in milliseconds |
None
|
end |
float
|
end of the stimulus, in milliseconds |
None
|
Source code in neurolib/utils/stimulus.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
SummedStimulus
Bases: BaseMultipleInputs
Represents the summation of arbitrary many stimuli.
Example:
summed_stimulus = SinusoidalInput(...) + OrnsteinUhlenbeckProcess(...)
Source code in neurolib/utils/stimulus.py
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
as_array(duration, dt)
Return sum of all inputes as numpy array.
Source code in neurolib/utils/stimulus.py
292 293 294 295 296 297 298 299 |
|
as_cubic_splines(duration, dt, shift_start_time=0.0)
Return sum of all inputes as cubic Hermite splines.
Source code in neurolib/utils/stimulus.py
301 302 303 304 305 306 307 308 |
|
WienerProcess
Bases: Input
Stimulus sampled from a Wiener process, i.e. drawn from standard normal distribution N(0, sqrt(dt)).
Source code in neurolib/utils/stimulus.py
381 382 383 384 385 386 387 388 |
|
ZeroInput
Bases: Input
No stimulus, i.e. all zeros. Can be used to add a delay between two stimuli.
Source code in neurolib/utils/stimulus.py
371 372 373 374 375 376 377 378 |
|
RectifiedInput(amplitude, n=1)
Return rectified input with exponential decay, i.e. a negative step followed by a slow decay to zero, followed by a positive step and again a slow decay to zero. Can be used for bistablity detection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
amplitude |
float
|
Amplitude (both negative and positive) for the step |
required |
n |
int
|
Number of realizations (spatial dimension) |
1
|
Returns:
Type | Description |
---|---|
`ConctatenatedInput`
|
Concatenated input which represents the rectified stimulus with exponential decay |
Source code in neurolib/utils/stimulus.py
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
|